Perch diameter and branching patterns have interactive effects on the locomotion and path choice of anole lizards.

نویسندگان

  • Zachary M Jones
  • Bruce C Jayne
چکیده

Natural branches vary conspicuously in their diameter, density and orientation, but how these latter two factors affect animal locomotion is poorly understood. Thus, for three species of arboreal anole lizards found on different size branches and with different limb lengths, we tested sprinting performance on cylinders with five diameters (5-100 mm) and five patterns of pegs, which simulated different branch orientations and spacing. We also tested whether the lizards preferred surfaces that enhanced their performance. The overall responses to different surfaces were similar among the three species, although the magnitude of the effects differed. All species were faster on cylinders with larger diameter and no pegs along the top. The short-limbed species was the slowest on all surfaces. Much of the variation in performance resulted from variable amounts of pausing among different surfaces and species. Lizards preferred to run along the top of cylinders, but pegs along the top of the narrow cylinders interfered with this. Pegs on top of the 100-mm diameter cylinder, however, had little effect on speed as the lizards ran quite a straight path alongside pegs without bumping into them. All three species usually chose surfaces with greater diameters and fewer pegs, but very large diameters with pegs were preferred to much smaller diameter cylinders without pegs. Our results suggest that preferring larger diameters in natural vegetation has a direct benefit for speed and an added benefit of allowing detouring around branches with little adverse effect on speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The choice of arboreal escape paths and its consequences for the locomotor behaviour of four species of Anolis lizards

The direction and speed of escape locomotion can affect the ability of an animal to evade a predator, and variation in habitat structure often affects speed. Consequently, the escape paths chosen by animals may affect their performance and subsequent survival. Arboreal locomotion is well suited for gaining insight into the choice of escape routes because of the discrete paths formed by branches...

متن کامل

Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata).

Animals moving through arboreal habitats face several functional challenges, including fitting onto and moving on cylindrical branches with variable diameters and inclines. In contrast to lizards and primates, the arboreal locomotion of snakes is poorly understood, despite numerous snake species being arboreal. We quantified the kinematics and performance of corn snakes (Elaphe guttata) moving ...

متن کامل

Total recoil: perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis).

Jumping is a common form of locomotion for many arboreal animals. Many species of the arboreal lizard genus Anolis occupy habitats in which they must jump to and from unsteady perches, e.g. narrow branches, vines, grass and leaves. Anoles therefore often use compliant perches that could alter jump performance. In this study we conducted a small survey of the compliance of perches used by the ar...

متن کامل

The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei).

Arboreal animals often move in habitats with dense vegetation, narrow perches and variable inclines, but effects of arboreal habitat structure on locomotor function are poorly understood for most animals. Several species of Anolis lizards, which have served as a model group for relating locomotor performance to morphology, have decreased maximal sprinting speeds when perch diameter decreases. H...

متن کامل

Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling.

Successful locomotion through complex, heterogeneous environments requires the muscles that power locomotion to function effectively under a wide variety of conditions. Although considerable data exist on how animals modulate both kinematics and motor pattern when confronted with orientation (i.e. incline) demands, little is known about the modulation of muscle function in response to changes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 215 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2012